第8回トマトロボット競技会

ジュニア部門 Advance クラス 競技規則

ver. 2021.7

2021年7月29日 初稿

競技会の目的

トマトの収穫を目的とした競技会を通じてアグリロボットの発展を目指し、さらに、自然環境への興味とロボット技術への興味を融合させる. 競技会用ロボットの開発過程において生み出された技術を農業分野へ還元する.

日時: 2021年12月4日(土),5(日)

開催場所: 北九州学術研究都市体育館

緊急事態宣言発令などの場合 (オンライン開催)

【昨年度ジュニア部門競技規則との変更点】

変更①【クラスの変更に関して】

LEGO MINDSTORMS EV3の日本での取扱状況などの変更があるため、本競技会では、ジュニア部門を2つのクラスにわけることとしました。LEGO MINDSTORM EV3 だけに限定せず、自由にロボット製作ができるクラスとして「Advance クラス」を新設します。クラス新設に伴い昨年の競技規則からの大きな変更箇所としてロボットの種類を指定する文言を追加しています。

追記箇所:【ロボットの種類, 大きさ制限】

変更②【競技の運営方法に関して】

コロナウィルスの感染拡大状況によって、運営状況が変更されるためオンサイト(会場型)の運営方法及びオンラインでの開催方法を追加しました。追加した部分を赤字で記しているので確認をお願いします。

変更③【ロボットの持ち込みについて】

2019 年度までのロボット持ち込みについてのルールをオンサイト(会場型)開催の時に再適用します。

変更4【競技コースについて】

本競技規則に記載してある競技コースは、あくまでも一例であり、競技に用いる本番コースでは、色やレイアウトが異なります。本番コースにつきましては、競技会当日に詳細が発表されます。そのため、コースの色及びサイズ、角度などは変更される点に留意してください。

オンラインによる実施のため、審判による判定は、カメラ映像越しでの判定となります。したがって、本番コースではカメラ映像で判定しやすくなるようにコースレイアウトに修正を加える可能性があります。

競技規則

【ロボットの種類、大きさ制限】

Advance クラスでは、各チームが独自に製作したロボットを用いて競技を行う。 地面への投影面積は、300 [mm] x 300 [mm] 以内とする。 (高さ制限なし) ただし、形状が変わるような可動部分をロボットが有する場合は、折りたたんだ 状態での面積とする。オンラインでの競技会開催の場合は、車検を実施しないが 規則遵守のこと。

【ロボットの製作について】

本クラスで使用するロボットは、競技会までに各チームで製作する。ロボットの各種構成部品は、各チームで設計・製作することを推奨する。ただし、LEGO MINDSTORMS キットの各種部品(センサ、モータ含む)を組み込むことも可能である。センサやモータの数や種類に制限を設けない。ロボットの制御装置には、各チームで選定したマイコンを用いることを推奨する。制御装置に Basic クラスと同様にインテリジェントブロックを使用することも可能だが非推奨とする。製作したロボットは、持ち込み後に車検を実施する。競技前日の車検時に参加者本人に作成の手順及びプログラムの説明をおこなってもらい自ら作成したことを証明する必要がある。オンライン開催の場合、代替方法として通信接続テス

説明ができない場合は不合格と判断し、ロボットの最初からの組み立て及び プログラムの作成を行う事。ただし、過去の参加者によるプログラムを継承する などは問題ないが、大会参加者本人が十分に機構及びプログラムを理解する事。 十分な理解がなく、車検による口頭での説明が不合格の場合、車体もしくはプロ グラムのみ使用不可能となる場合もある。

【ロボットの機構について】

ト時にインタビューを行う。

ロボットの機構には、鋭利なものは認めない。また、コースなどの競技フィールドに傷をつける機構などは禁止する

【競技の運営方法に関して】

2021 年度におけるトマトロボット競技会ジュニア部門は、オンサイト(会場型)での開催もしくは、遠隔中継を用いた競技会とする(開催方法の決定は、緊急事態宣言及び蔓延防止などの発令によって随時変更するが、開催 1ヶ月以上前までに大筋の方針をメールで報告する)。オンサイト競技会場の設置については、オンライン開催の場合、運営側では行わないものとし、参加チーム毎に競技可能なスペースおよび遠隔中継のための機材一式(貸出含む)を確保する必要がある点が前年度までの運営方法と異なる。

【遠隔中継に必要な機材一式】

中継装置:カメラが接続(内蔵)されているコンピュータ(相談に応じます)

中継環境:インターネット環境(相談に応じます)

中継用ソフトウェア: Zoom を使用予定 (相談に応じます)

競技コース:運営側より各グループへ郵送予定

Zoom 用の会議 ID を運営側から各グループに送付して遠隔環境を整備する。遠隔環境構築後に、各グループに割り当てられた競技時間内に競技および採点を行う。競技前日には、遠隔環境の構築および運営側との接続テストを行う。競技当日は、午前中には、プレゼンテーションの審査を行う。午後には、各グループ単位で競技を開始する。そのため、各種伝達手段(メールやLINE、skype などのチャット機能)を利用して連絡が取れる体制を確保することが必須となる。

●競技の流れ

オンサイト(会場型)の場合 (競技準備から競技終了まで)

- 1. 準備開始 (競技開始 2 分前) 競技実行委員の指定するタイムスケジュールに従い、準備を開始する
- 2. 競技開始

競技実行委員の指定するタイムスケジュールに従い、競技を開始する

オンラインの場合(競技準備から競技終了まで)

- 1. 準備開始 (競技開始 15 分前) 競技実行委員よりメールなどを利用して、準備開始の合図を送信する
- 2. カメラチェック (競技開始 10 分前) こちらからカメラでの撮影状況をチェックします。カメラの撮影に関して の注意点(下記に示す)を参考にカメラの設置が問題ないかをチェックす る

3. 競技開始

競技中は、カメラの映像が途切れる・止まるなどの不具合がないように気をつけること。カメラや通信状況の不具合が生じた場合、競技採点不可能となる場合がある。そのため、競技中にビデオカメラや携帯電話などを利用して録画(撮影日時が判別できるもの)するなどバックアップできる環境を整えることが望ましい

【競技中のカメラ撮影(中継)での注意点】

遠隔で競技を中継する際に以下の点に注意して、競技を行うこと

- 競技コースの全体が見えるカメラ位置にする
- 競技に使用するトマトが判別可能な程度のカメラ映像(解像度)を推奨 する
- カメラの映像内に人や物で、競技風景に死角が生じないように留意する

中継用カメラのトラブルに対する対応:

カメラの環境や通信環境でのトラブルを避けるために、もう一台のカメラや 携帯電話での撮影を推奨する。もし不具合が生じた場合には、実行委員へ速や かにメールなどの手段を使い報告を行い、その後の判断を仰ぐこと。競技時間 終了後 10 分以内にバックアップで撮影していた録画ビデオの送信を行うこ と。連絡が付かない場合や録画による確認ができない場合には、競技が失格と なる。

【競技課題】

- 1. 競技エリア内の黒色のコースライン(以下コースライン)を検知し、ライン に沿って移動すること。
- 2. コース途中に配置された3箇所のトマト収穫場にあるトマト(各収穫場に2 個ずつ配置)を収穫すること。
- 3. 収穫したトマトを保管場所の枠内まで運ぶこと。
- 4. 充電ステーションを検知し、一時停止すること。

【競技方法】

- 1. 競技の制限時間は、5分とする。
- 2. ロボットはスタート地点より出発し、**コースライン**に沿って移動する。なお、 **競技エリアの背景**色は、白色とする。
- 3. トマト収穫場をみつけて、移動する。
- ※赤色、黄色、緑色に対応した3色の標識をコースライン上に設置している。標識から各色の誘導用ラインに沿って移動すると、トマト収穫場へ到達する。ただし、3つの色の内の1色だけは誘導用ラインが途切れている。
- 4.トマト収穫機構を用いて収穫する。
- ※収穫後は、コースラインに復帰すること。
- 5.トマトを倉庫に格納する。
- ※コースライン上には、トマト収穫場と同様に各色に対応した標識がある。運搬 してきたトマトは、倉庫(四角い枠)内に収まるように置くこと。
- 6. コースラインに復帰し、充電ステーションを目指す。
- 7. 充電ステーションを見つけたら、3秒以上一時停止する。
- 8. 充電ステーションの前で停止して音を鳴らすことでゴールとなる。

【得点ルール】

- 点数
- コースラインに沿って移動する: 100 点
 ※トマト収穫場まで行くと得点とする。
 - ※得点は、一度限りとする。
- 2. トマトを収穫する: 誘導用ラインあり: 1 個あたり 50 点、

誘導用ラインなし 1個あたり100点

3. トマトを搬送する:

トマトがコースに接地していない状態で運搬した場合: 1個あたり 40 点 ※ただし、ごく短い時間(およそ 1 秒以下)の接触は、接地とは判定しない。格 納完了した時点で得点とする。トマト収穫場からコースラインに復帰後からの 接地判定を取るものとする。

4. トマトを格納する: 誘導用ラインあり: 1 個あたり 60 点、

誘導用ラインなし 1個あたり110点

- ※ ただし、トマトに傷がある場合は加点しない。搬送の得点は加点される。
- 5. 充電ステーションを利用する: 100 点
- 6. ゴール: 100 点

〈ボーナス点〉

- (a) すべてのトマトを一周目で運搬完了してゴールした場合: + 400 点
- (b) すべてのトマトを二周目で運搬完了してゴールした場合: + 200 点

プレゼンテーション 点数 200点

※ プレゼンテーションは2名の審査員によって審査をおこなう。採点基準は、 発表態度、発表の分かりやすさ、工夫点(機構などのロボットの創意工夫点)、 ロボットがどのようにして課題をクリアするかに対する発表を総合的に判断し、 採点をおこなう。

・得点ルール補足事項

充電ステーションの利用は、1周につき1回必ず行う事とする。 コースラインの逆走は禁止する。再度始める場合は、リスタートとする。 制限時間内であれば何回まわっても良い。

競技途中にロボットへのプログラムの調整/書き直しは自由とする。ただし、 審判に宣言し、ロボット停止させて調整/書き直しをする。

競技中にプログラムを1度も書き直しや調整などの変更をせずに完走した場合、ボーナス点として200点を追加する。また、あらかじめ複数のプログラムを用意して、ロボットを停止後にボタンやセンサなどを用いてプログラムの変更

や動作の変更を行うなどの工夫をした場合は、ボーナス点 100 点を追加する。 ただし、パソコンにつないでパラメータの調整やプログラムの変更/書き込み を行った場合はボーナス点の適用はないとする。

【トマトの取り扱いに係わる得点について】

トマトは食品である。本競技会においても食品としての取り扱いが不適切である場合は、格納の得点を得ることができない。競技におけるトマトの確認手順とトマトの扱いが適切ではない場合の判断基準を下記に示す。

確認手順

- 1. トマトの傷の有無は競技前に必ずチームメンバー代表者 1 名が確認をおこなう。
- 2. 競技終了後、 すべてのトマトを審判とチームメンバー 1 名で傷の確認 作業をおこなう。異議申し立てがある場合は、チームメンバー 1 名と実 行委員長および実行副委員長で協議をおこなう。

トマトの扱いが適切ではない場合の判断基準

- 1. トマト内部の液体が外部に出た場合
- 2. トマト内部が見えるような傷がある場合
- 3. トマトが競技前の状態から明らかな凹みが生じている場合
- 4. トマトを床に接触した状態で運搬させている場合
- 5. 上記の判断基準以外であってもトマトを扱っていないと判断された 場合

【録画した動画の公開について】 オンラインの場合

技術共有を目的として、競技動画及びプレゼンテーションは、ホームページ などを介してパスワードなどのセキュリティ環境を整えて公開する。 なお、公開に際して肖像権などの権利は実行委員会が有するものとし、公開を避けて 欲しい場合は事前に実行委員に相談すること。

表:得点表

競技課題	得点	競技中にて獲得
		可能な回数
コースラインに沿って移動	100 点	1
トマト収穫(誘導ライン有)	50 点	4
トマト収穫(誘導ライン無)	100 点	2
トマト搬送(接地無)	40 点	6
トマト収納(誘導ライン有)	60 点	4
トマト収納(誘導ライン無)	110 点	2
充電ステーションで停止	100 点	1
ゴール(停止して音を鳴らす)	100 点	1
周回数1ですべてのトマトを収穫・運搬・収納	400 点	1
をしてゴール(ボーナス点)		
周回数2ですべてのトマトを収穫・運搬・収納	200 点	1
をしてゴール(ボーナス点)		
競技中にロボットに触れることなくプログラム	200 点	1
の書き換えなしの完全自律でゴールできた場合		
プログラムの動作をセンサやボタンを利用して	100 点	1
手動にて変更できるように工夫した場合		

得点の獲得例

1 周目ですべてのトマトボックスを獲得し、ゴールした場合の最高得点

コースライン得点 100

すべてのトマトを収穫 50 x 4 + 100 x 2

すべてのトマトをコースに接地させずに搬送 40 x 6

すべてのトマトを収納 60 x 4 + 110 x 2

充電ボックスでの充電 100

ゴール 100

ボーナス点 (a) 400

プレゼンテーション点 200点

合計 2000 点

2周目ですべてのトマトボックスを獲得し、ゴールした場合の最高得点

コースライン得点 100

すべてのトマトを収穫 50 x 4 + 100 x 2

すべてのトマトをコースに接地させずに搬送 40 x 6

すべてのトマトを収納 60 x 4 + 110 x 2

充電ボックスでの充電 100

ゴール 100

ボーナス点 (a) 200

プレゼンテーション点 200点

合計 1800 点

3 周目以降ですべてのトマトボックスを獲得し、ゴールした場合の最高得点

コースライン得点 100

すべてのトマトを収穫 50 x 4 + 100 x 2

すべてのトマトをコースに接地させずに搬送 40 x 6

すべてのトマトを収納 60 x 4 + 110 x 2

充電ボックスでの充電 100

ゴール 100

プレゼンテーション点 200点

合計 1600 点

- 競技中にロボットに触れることなくプログラムの書き換えなしの完全自律 でゴールできた場合 200点のボーナス
- プログラムの動作をセンサやボタンを利用して手動にて変更できるように 工夫した場合 100 点ボーナス

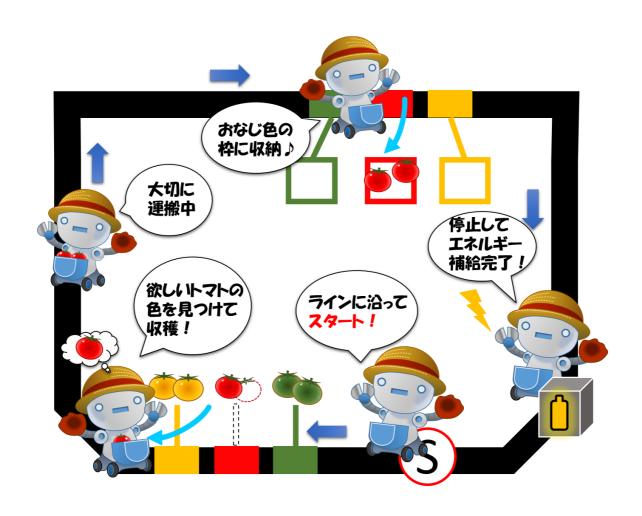


図 競技イメージ

コースレイアウト例:

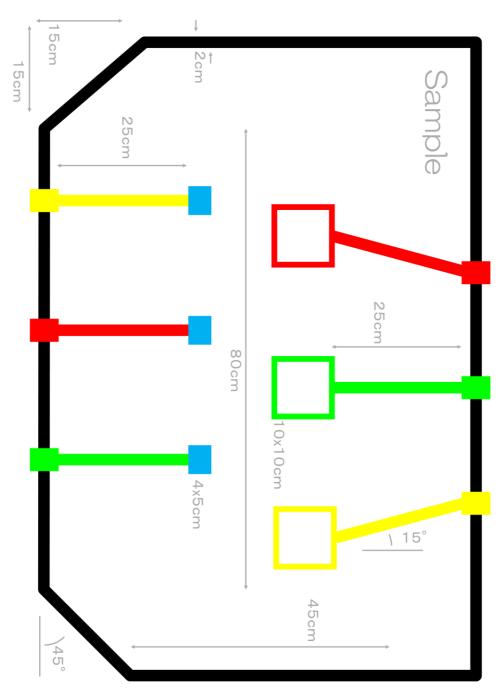


図 競技コースイメージ

※競技コースは、本番コースとは、色やレイアウトが異なります。競技会当日に詳細が発表されます。そのため、コースの色及びサイズ、角度などは変更されることに留意してください

問い合わせ先

西日本工業大学 工学部 総合システム工学科

准教授 武村泰範 takemura@nishitech.ac.jp

准教授 園田隆 sonoda@nishitech.ac.jp