ADMISSIONS | | Examination Date | Application period | |-------------------|------------------|--------------------------| | The 1st selection | July 1, 2023 | May 30 – June 8, 2023 | | The 2nd selection | August 27 2023 | July 24 – August 4, 2023 | | The 3rd selection | October 7, 2023 | September 6 – 20, 2023 | | The 4th selection | January 20, 2024 | December 7 – 21, 2023 | ^{*}For interview and oral examinations will be conducted through the Internet. # How to apply # Contact Find a laboratory in your desired field and contact the faculty member. ### Password to apply Send the requesting email to the admission section # Online Registration Website Admission Application Guidance # Invitation to Life Science and Systems Engineering Takashi YASUDA Graduate School of Life Science and Systems Engineering (LSSE) was established in 2000 at Kitakyushu Science and Research Park to promote advanced research based on superior biological functions and implement them into practical engineering technology. LSSE has succeeded in creating frontier technologies for meeting social needs in broad technical fields related to environment/energy, robot/artificial intelligence, medical application, etc. Diversity in students is a big feature of LSSE. In addition to students from two undergraduate schools of Kyushu Institute of Technology, many students gather from domestic universities and colleges of technology throughout Japan and from various overseas universities. Collaborative works among these students with different experiences and values generate fresh ideas leading to technical innovation as well as fostering communication ability with recognition of diversity. LSSE has educational programs and research projects in collaboration with universities and companies within Kitakyushu Science and Research Park. Also, LSSE is offering study abroad programs with overseas partner universities, and conducting many international joint research projects with them. Through these programs and projects students can strongly enhance their global perspectives. We invite you to LSSE to immerse yourself in a cutting-edge education and research environment and to launch your promising career on an international stage. Special courses for International students 3 Main Activities 4 Department of Biological Functions Engineering 6 Faculty Member (Department of Biological Functions Engineering) 7 Department of Human Intelligence Systems 11 International Exchanges 16 CHARACTERISTICS of the graduate course Utilizing Life in Engineering Applying Engineering to Life # Distinguishing Features of the Graduate School The basic objective of this graduate school is the education and development of engineers and researchers capable of elucidating the structures and functions of living organisms for resource and energy saving, environmental symbiosis, human affinity, and other properties, and to develop their technological utilization. To achieve this goal, under the masters program, its Department of Biological Functions Engineering applies the superior functions of organisms to the solution of problems and needs that confront society, and its Department of Human Intelligence Systems develops the skills and capabilities for building an optimum society of ease and comfort in a world of complex intelligence-body-environmental systems. On the other hand, under the doctoral course of obtaining specialization in the life science and systems engineering field, focus is directed towards the promotion and intensification of cross-specialization and global education. The school is accordingly dedicated to the development of professionals that are constantly focusing on the emerging trends in research and technology and working to achieve innovation and advances. The school, in short, is dedicated to the development of globally oriented professionals who can work with society to meet the needs and solve the problems that confront it today and contribute to a sustainable and harmonious future. INDEX # SPECIAL COURSES FOR INTERNATIONAL STUDENTS # MAIN ACTIVITIES ## **Advanced Assistive Robotics** (Global AAR) Course This course is an international course operated by our institute since 2015, and consists of Japanese and international students in the Department of Human Intelligence and Systems Engineering (masters course) and the Department of Life Science and Systems Engineering. We have accepted students from diverse fields such as integrated circuits, control, sensing, nanosystems, artificial intelligence, LOT systems, behavioral science, and neurosci- The course is designed to accommodate international students by using English as the language for slide presentations and Q&A sessions. Besides, the course provides opportunities for English presentation and communication training through journal clubs where students read and understand the latest papers, AAR seminars with top-notch lecturers, and the practicum in Robot Operating System. Website URL: https://www.brain.kyutech.ac.jp/global_aar/ #### GE³ Course Global Education of Green Energy and Global Education of Green Energy Green Environment (GE3) Course This course provides an integrated program of education and research related to "green energy/green electronics technology" and "carbon-neutral technology", with a view to the future of energy and environmental cooperation across a wide area of Asian countries, including Japan. It is also an innovative program to develop 21st-century global engineers who can maintain a sustainable socio-economy and lead the world through global seminars and collaborative projects. Education and research on these green technology will not only contribute to the development of peaceful, safe, and secure societies but also step forward towards achieving the Sustainable Development Goals (SDGs). Lectures are also designed for international students, and it is possible to complete the master's course in English only. "GE3 Seminar" provides state-of-the-art technologies and research topics inviting lecturers from academics and Japanese companies. - Printable photovoltaic cells Biomolecular Engineering - Functional materials and their electrochemical devices. - Organic electronic devices Motor-drive system - Highly efficient and flexible energy-conversion - Environmental-Benign Functional Materials - Next-generation power semiconductor Website URL: http://www.life.kyutech.ac.jp/~ge3/en/ # Clean Cycle Chemistry Course to learn SDGs realized by chemistry The SDGs are the "17 goals set by 193 UN member states to achieve in the 15 years from 2016 to 2030" adopted at the 2015 UN Summit. The "Clean Cycle Chemistry Course" is an active learning program with the theme of research and development aiming at the goals that can be achieved by chemical technology among the 17 goals and the establishment of the chemical technology. Professors in charge of this course are advanced researchers who promotes green chemistry research and green biogeochemical research to make elements a recyclable resource. The professors not only gives lectures, but also conducts active learning as a FACILITATOR of "cultivation of creativity". In one of the compulsory subjects, students will plan and present concept and chemical methods that students can contribute to achieving their goals in their respective research fields. Excellent Presentation Prize will be awarded to excellent proposal, and in addition, feasible collaboration proposals will be developed into cross-disciplinary cyclical chemistry research by conducting collaboration demonstration experiments between the students and Professors in charge of this course. This course is intended for graduate students in the master's program, and takes and masters the designated 6 compulsory subjects (The language used for all curriculums is Japanese). Those who complete the course will be received a "Certificate of Completion of the Clean Cycle Chemistry Course". # **ABOUT** It will be 10 years since MSSC overseas education and research base was established, MSSC is operated jointly with University of Putra Malaysia (UPM), MSSC is an international center promoting education and research along with supporting various activities such as short-term study programs, research programs at UPM, corporate internships with Japanese companies in Malaysia, and alumni associations with Malaysian graduates. The most representative program between the two schools is SAES, which is held alternately every year at each university. The number of participants has grown to more than 500 even though both countries under the COVID-19 pandemic. These our activities have also greatly spread on the outcome of the research of both schools. The number of papers co-authored by UPM is increasing year by year. Regarding Field Weighted Citation Impact (FWCI) from 2019 to 2022, Kyutech is 0.95 and UPM is 1.04. However, co-authored publication is 1.28. Website URL: https://www.kyutech.ac.jp/english/mssc/ # MAIN ACTIVITIES Join Robot Competitions!! ### Hibikino-Musashi@Home The Kyutech Home Service Robot team Hibikino-Musashi@Home (HMA) won the first prize two years in a row in Domestic Standard Platform League (DSPL) of RoboCup 2017 and 2018, and Partner Robot Challenge (Real Space) in World Robot Summit 2018 and 2020 (held in 2021) . HMA also won the first prize six times in RoboCup JapanOpen. https://www.brain.kyutech.ac.jp/~hma/ #### ACHIEVEMENT - RoboCup 2017 Nagoya, @Home DSPL first place. - RoboCup 2018 Montreal, @Home DSPL first place, P&G Dishwasher Challenge Award - World Robot Challenge 2018, 2020 (held in 2021), Service Robotics Category Partner Robot Challenge Real Space first place. METI Minister's Award. RSJ Special Award. - RoboCup 2019 Sydney, @Home DSPL third place. - RoboCup 2021 Worldwide (Online), @Home DSPL second place. - RoboCup Asia-Pacific 2021, @Home OPL first place, DSPL first place, Simulation first place. - RoboCup 2022
Bangkok, @Home DSPL third place - RoboCup JapanOpen 2018, @Home Open Platform League (OPL) first place. JSAI Award. - RoboCup JapanOpen 2019, @Home OPL first place, DSPL first place. - RoboCup JapanOpen 2020, @Home OPL first place, DSPL first place, OPL Technical Challenge first place. - RoboCup JapanOpen 2021, @Home DSPL first place #### TEAM INTRODUCTION #### Team KUROSHIO, the allied team of 8 institutions including Kyutech, won the second place and 1 million US dollars in Shell Ocean Discovery XPRIZE, the international competition of autonomous ocean exploration technologies. Kyutech Underwater Team won in the AUV League of Underwater Robotics Competition in Okinawa URC in 2020. As the URC is held in the sea, AUVs are required to be highly autonomous and completeness. Hibikino-Toms, agricultural robots must work in the actual field and need AI, gentle mechanism to living things. Kyutech "Tometoers" join the Tomato-Harvesting-Robot competition and show good results (Winner in 2019, 3rd in 2020, 2nd in 2021) Hibikino-Musashi, the Kyutech Robo Cup MSL team Hibikino-Musashi won the championship more than 10 times in Japan Open and one of veteran teams in World Cup. Each team joins with 5 soccer robots which act autonomously with mounted sensors only. # DEPARTMENT OF BIOLOGICAL FUNCTIONS ENGINEERING Graduate School of Life Science and Systems Engineering ### **Division Overview** The research and education in this department deals with the realization of materials, structures and energy conversion functionalities of nature/organisms along with their utilization in engineering. The main objective of this department lies in discovering solutions to social issues like the global environment and human health to promote the creation of new industries, by integrating the fields of the environment, energy, materials, and bioengineering. Apart from this, global education such as international internship has been performed at our international research bases. # **Divisions** #### **Division of Green Electronics** This division is devoted to the investigation of "green electronics technology," such as the fabrication and evaluation of printable solar cells, new functional materials, and their application to electrochemical devices, organic photo-electronic devices, construction of flexible and efficient power conversion and motor control systems, development of energy production systems utilizing renewable energies and environmentally friendly devices with carbon materials. The teaching curriculum is provided under the research themes outlined above. ### **Divsion of Biological Mechanics** The research and education in this division are conducted based on mechanical engineering such as the mechanics of materials, fluid and thermodynamics, the dynamics of machinery and micromachining, and the materials science of metals and ceramics. These activities contribute to the following area of industrial/medical applications: (i) the maintenance and recovery of bio-functions, (ii) medical and welfare support, (iii) development of biocompatible materials and medical devices, and (iv) design and development of biomimetic materials and intelligent machines. #### Division of Environment Conscious Chemistry and Bioengineering The goal of this division is to re-vitalize the engineering technologies responsible for the sustainable development of industries and society with environmental consciousness. The academic field of this division includes chemical and biological research and technologies that are learned from the highly efficient reactions of biological systems. Environmentally conscious chemistry and bioengineering may lead to innovations in chemical and biological technologies. This division strives to globalize our graduate program through the development of frontier research in environmentally conscious chemistry and bioengineering. Functional Biomaterials tmiya@life.kyutech.ac.jp Research Overview Development of novel biomaterials for http://www.life.kyutech.ac.jp/~tmiya/ regeneration of bone, tooth and nerve consumption inspired by biological system Development of biocompatible materials for repair and Development of ceramic processing with low energy Development of microparticles for cancer treatment Toshiki MIYAZAKI Power Electronics #### Tsuyoshi HANAMOTO Professor, Ph.D Study on power electronics and its application. Development of motor controls and power conversion systems hanamoto@life.kyutech.ac.jp http://www.life.kvutech.ac.ip/~hanamoto/ ■ Motor control ● Hardware control High efficiency power conversion ● Environmentally friendly control Development of human-friendly and environmentally friendly electrical power conversion systems and application for motor control systems. Power semiconductors. Power electronics and systems omura@life.kvutech.ac.jp http://power.kvutech.ac.ip/ Professor, Dr. Eng. Department of Biological Functions Engineering Development of ultimate power semiconductor devices to atcheve carbon neutral. Power semiconductors are key device for xEVs, PVs and wind firm for the energy Power Semiconductors, Power Electronics Ichiro OMURA #### **Division of Green Electronics** Nanomaterials, solar cells, Metal ion batteries Professor, Ph.D. Tingli MA Development of nanomaterials and application for solar cell, metal ion batteries, metal air batteries nail tinglima@life.kvutech.ac.ip http://www.life.kyutech.ac.jp/~tinglima/ Keywords Research Overview Design and synhthesis of Nano material Li ion battery Na ion Battery Metal air battery ● Perovskite solar cell High performance Design and syhtheses of nanomaterials and their characterization. Development of new materials for stable perovskite solar cells. Development electrode materials with high performance and low cost for application to Li-ion batteries and Na-ion batteries, as well as metal-air batteries. Application #### **Division of Green Electronics** **Division of Green Electronics** Keywords Power Flectronics Carbon Neutral Silicon Wefer Functional Materials and Devices Professor, Ph.D. shvam@life.kvutech.ac.ip Research Overview Molecular design Solar cells Organic devices Photo-functional materials Smart materials http://www.life.kvutech.ac.ip/~shvam/ #### **Division of Green Electronics** Power semiconductor, Semiconductoer material Associate Professor, Dr. Eng. **Akihiko WATANABE** Development of diamond power devices to realize the next generation power society Keywords http://www.life.kyutech.ac.jp/~watanabe/ Research Overview watanabe@life.kyutech.ac.jp direct current transmission. Diamond Research on ultra-high performance power devices based on the superior semiconductor properties of Ultra high voltage power devices diamond. The realization of diamond power devices will contribute to the realization of a decarbonized society by enabling the highly efficient use of electrical energy and the construction of energy grids with the Biomechanics Biomedical Engineering and Biomechanics for http://www.life.kyutech.ac.jp/~yamada/ Keywords Mechanical testing Finite element method Sensor device development Vascular diseases Pressure injury Medical diagnosis assistance and prevention of diseases and injuries through measurement-device development, mechanical testing, constitutive modeling and computational analysis, focusing on mechanics of diseased arteries, endodontic treatments, prevention of pressure injury #### Division of Biological Mechanics Biofluid Engineering Micromachine with concentration Maragoni effect engine Fractal analysis and network of arterials Keyword:Bio-fluid dynamics, Bio Medical Engineer- Professor, Dr.Eng. Masaaki TAMAGAWA **Biofluid Engineering for Advanced Medicine** tama@life.kyutech.ac.jp Biomechanical Analysis of Brain Injury by Fall ing, CFD, Shock Wave http://www.life.kyutech.ac.jp/~tama/ and Development of Medical Devices Keywords ■ Flow visualization Blood flows Research Overview ● Computational Fluid Dynamics (CFD) 1.Computational and experimental studies of Hemolysis and Thrombus formation in blood flows, 2. Application of Shock Waves and Ultrasonic to Drug ● Hemolysis and Thrombus formation Delivery Systems, Water treatment, Tissue Engineer Shock wave drug delivery systems ing. 3. Development of driving force of micromachines. Bio-microdevices yasuda@life.kyutech.ac.jp Keywords Cell analysis Microliquid handling Biosensing Micro-nanofabrication Surface modification Cell culture Research Overview we are developing biomedical microdevices such as microfluidic devices for single-cell analysis, nicroelectrode array devices for extracellular potential measurement, microhole array devices for production/separation of extracellular vesicles, etc. Shyam S.PANDEY Synthesis and Characterization of Photo-functional Materials for Advanced Device Applications Design and development of photo-functional materials for energy harvesting and organic electronic devices. ### **Division of Biological Mechanics** Professor, Dr. Eng. Hiroshi YAMADA Life-Sustaining Technologies nail yamada@life.kyutech.ac.jp Biomedical engineering Research Overview Professor, Ph.D. Takashi YASUDA Study on Bio-microdevices for Medical esearch and Drug Development http://www.life.kyutech.ac.jp/~yasuda/ MEMS (Micro Electro Mechanical System Using techniques of microfabrication and cell culture. Hybrid material Artificial bone Artificial ioint Cancer treatmen Biomaterial Ceramics Biocompatible material **Division of Biological Mechanics** Professor, Ph.D. tissue repair Division of Biological Mechanics -mail momo@life.kyutech.ac.jp Kevwords DNA ● Tumor cell Keywords New energy CO₂ fixation Functional interface Radical chemical process Phases and Interfaces On-chip analysis MEMS ■ Micro Total Analysis Systems Mechanical characterization Real-time measurement http://www.life.kyutech.ac.jp/~momo/ Research Overview Applying MEMS (Micro Electro Mechanical Systems) technology to biological research at the molecular, cellular, and tissue level. Development and
characterization of novel microfluidics for mechanical, chemical, and genetic assays for oncological studies. # Division of Environment Conscious Chemistry and Bioengineering ail haruyama@life.kyutech.ac.jp Professor, Dr. Eng. Tetsuya HARUYAMA Establishing technology from elucidation of interface functions: leading to solutions to social issues Functional Interface Engineering http://www.life.kyutech.ac.jp/~haruyama/ Research Overview We are developing research to realize various functional interfaces (reaction fields) by elucidating the functions of heterogeneous interfaces, "Chemical resource conversion of nitrogen, oxygen, and water (phase interface reaction technology) ", "interface that converts CO2 into resources", "process technology with low environmental load", "safe decomposition of harmful substances", etc. ### **Division of Environment Conscious Chemistry and Bioengineering** Keywords Photocatalyst Nanomaterial Photoelectrode Photoacoustic spectroscopy Analytical Physical Chemistry Professor, Ph.D. Naoya MURAKAMI Spectroscopic analysis on semiconductor photocatalyst and development of photocatalytic system for light-energy conversion murakami@che.kyutech.ac.jp http://www.life.kyutech.ac.jp/~murakami/ Research Overview Analysis of photofunctional material using photoacoustic spectroscopy, Development of photocatalytic system for light-energy conversion. ### Division of Biological Mechanics Intelligent machine Associate professor, Ph.D. (Eng.) Kazuto TAKASHIMA Study on soft sensors and actuators, and applications to medical, welfare and industrial technologies **FACULTY MEMBER** ktakashima@life.kvutech.ac.ip http://www.life.kvutech.ac.ip/~ktakashima/ #### Research Overview Smart soft materials Soft actuator ● Endovascular treatmen Tactile sensor Surgical simulato Stiffness control Biotribology Keywords Ceramics Organic molecules Tissue regenerative medicine Environmental purification Metals Keywords Applications of shape-memory materials and artificial muscle to human-interactive robot. Development of soft tactile sensor. Development of device placement simulator for endovascular treatment. # **Division of Biological Mechanics** Harmonic Functional Materials Associate professor, Jin NAKAMURA **Development of harmonic functional materials** towards medical and environmental applications jin@life.kyutech.ac.jp http://www.life.kyutech.ac.jp/~jin Research Overview Functional materials Development of composite materials (ceramics, metals, and organic molecules) that exhibit multifunctions in response to stimuli emitted by living organisms. Development of synthetic processes for composite materials with controlled structures at molecular order Development of materials for tissue regeneration Unique microbioal functions can be elucidated and **Toshinari MAEDA** medicine and environmental purification # **Division of Environment Conscious Chemistry and Bioengineering** Microbial Biotechnology Advanced Biotechnologies using Unique **Microbial Functions** nail toshi.maeda@life.kyutech.ac.jp http://www.life.kyutech.ac.jp/~toshi.maeda, Professor, Ph. D. Keywords Metabolic Engineering improved using biotechnologically-engineered Genetic Engineering approaches to construct an innovative technology Environmental Biotechnology which should be useful to the environment and human White Biotechnology society # Division of Environment Conscious Chemistry and Bioengineering Research Overview Bioremediation Environmental Bio-adaptation Bacterial interaction Biopolymers, Structure and Function Associate Professor, Tamaki KATO tmkato@life.kyutech.ac.jp Design, synthesis, and conformational analysis of functional biomolecules. http://www.life.kyutech.ac.jp/~tmkato/ Research Overview Enzyme Amino acids Design, synthesis, and conformational analysis of peptide-based artificial functional molecules (Peptide Keywords Peptide Molecular design Organic Synthesis SAR nanostructures, peptide-based drug design etc) ### Division of Environment Conscious Chemistry and Bioengineering Biomolecular Engineering Associate professor, Shinya IKENO Development and application of functionalized nanomaterials using biomolecular ikeno@life.kyutech.ac.jp http://www.life.kyutech.ac.jp/~ikeno/ Functionalized peptide - Biopesticide - Biostimulants - Genetic engineeringRecombinat protein - Drug screening - Nanoparticle ### I have been studying development of functionalized nanomaterial combined with biomolecule and nanoparticle, and application of functionalized biomolecular to bioprocess such as production of recombinant protein. # Division of Environment Conscious Chemistry and Bioengineering Catalyst Electrolytic Engineering Associate Professor, Yoshiyuki TAKATSUJI Efficient and selective electrochemical conversion of substances ail takatsuji@life.kyutech.ac.jp - Catalytic metal electrode - Plating technology ● CO₂ fixation Energy and environment Research Overview Our research has committed to solving to environmental and energy problems with the catalytic a metal electrode that can produce the efficiency substance. The catalytic metal electrodes have been developing and also analyzing the reaction mechanism and the produced substance. We will pursue research in the field of clean cycle chemistry (Tri-C) and achieve the goals of the SDGs. - Sustaibable Society - Additional value Cellulose - Global Issue - Polymer Materials Organic Synthesis We aim to realize a material cyclical society based on both environmental preservation and economy. Highly value-added functional materials based on https://www.life.kyutech.ac.jp/~yando/wp/?page_id=34 Environmental-Benign Functional Materials characteristics of waste and biomass are established and evaluated. Department of Biological Functions Engineering Division of Environment Conscious Chemistry and Bioengineering Associate Prof, Ph.D. Yoshito ANDO based on biomass and/or waste with a yando@life.kyutech.ac.jp Design and evaluation of functional materials nigh-added value forward to sustainable society #### Division of Green Technology Micro-Technology Iwao SASAKI Professor, Ph.D. The research on the upgrading of the materials or Mechatoronics equipments http://www.life.kyutech.ac.jp/~sasaki/sasaki_j.htm ● Functional Thin Film Solid Lubrication Bearing Vapor Deposition Magnetic Material sasaki@life.kyutech.ac.jp Research on functional materials utilizing the unique phenomena, which are prominant in a micro/nanome- #### Division of Green Technology Mechatronics of Engineering Visiting Professor, Doctor Hideki HONDA Mechatronics Control to fit in human society honda@life.kyutech.ac.jp Mechatronics Control Theory Motion Control http://www.life.kyutech.ac.jp/~honda/ As robots are good examples, mechatronic devices are now used in various fields as well as in the industry. Therefore, in addition to research on the high-speed and high-accuracy performance required by the industry, we also study mechatronics technology that is kind to people and supports them. ### Division of Plant Life-cycle Engineering **Special Appointment** Plant Life Cycle Engineering **Associate Professor** Masahiro NAKANO mail nakano@life.kyutech.ac.jp **Plant Life Cycle Engineering** AI ● Plant Life Cycle Welding repair Equipment diagnosis Image analysis ### Research Overview Plant Life Cycle Engineering (Research on autonomously controlled robot welding, and Research on thermal elasto-plastic analysis of welds and ● Thermal elasto-plastic analysis optimization of welding order) # Department of **Biological Functions** Engineering # DEPARTMENT OF HUMAN INTELLIGENCE SYSTEMS Graduate School of Life Science and Systems Engineering ### **Division Overview** Department of Human Intelligence Systems aims to incorporate the principles of human intelligence into intelligent information processing platforms and artificial intelligent systems, as well as to actively contribute to the development in the industry. The research and education in this department covers but is not limited to (i) advanced development of mechanical systems and devices such as intelligent autonomous robots, (ii) intelligent information system development and artificial intelligence algorithms design that incorporates the principles of human reasoning, (iii) scientific analysis of social activities and human intelligence by using mathematical modeling, brain science and cognitive science in general. # **Divisions** ### Division of Human Intelligence and Machines Division of Human Intelligence and Machines is teaching and researching in the fields of robotics and devices, which could realize human-like intelligence by utilizing rational and significant structures as well as functions of biological organisms to achieve low-energy consumption, harmony with the environment, and human-friendly behavior. Through the teaching and research, we will bring students up to be persons and professionals who are actively involved in the global world with to create new public services, new business, and new social value. ### Division of Intelligence Systems and Emergent Design The division is engaged in the design of new technologies and theories that are inspired by human intelligence. It is a form of societal engineering focusing not only on cognitive functions of recognition, learning, and reasoning, but also on social abilities with emotions, Kansei, and communications. This field requires the study of mathematical modeling, informatics, and systems engineering toward a comprehensive understanding of computation in brain-bodyenviro ment interaction and an advanced development of intelligent partners and platforms. #### Division of Human Interaction and Brain Functions It is important to study the relationship between the function of the brain, and the nature of society made by humans to clarify human intelligence. In this division, we study the characteristics of neurons of which the brain consists, the information processing in which many neurons are involved, behaviors as results of the
processing, and the communication mechanism of humans in a society. #### Division of Human Intelligence and Machines Field Robotics Professor, Ph.D Kazuo ISHII Research on field robotics and their applications ishii@brain.kvutech.ac.ip http://www.brain.kvutech.ac.ip/~ishii/ - Field robot - Underwater robot Agricultural robo - Soccer robot - Inspection robot Motion control system self-localization system, adaptive learning system, motion control system, bio-inspired information Development of field robots such as underwater robot, agricultural robot, inspection robot, and research on related topics, environment recongnition system, Neural networks ### Division of Human Intelligence and Machines Human function substitution systems Professor, Ph.D. (Eng.) Chikamune WADA Research on developing functional substitution system for the disabled/the elderly people based on human sensory/motor characteristics mail wada@brain.kyutech.ac.jp http://www.brain.kvutech.ac.ip/~wada/ #### Research Overview Human interface - Assistive technology ● Functional substituti - Biological information - Biological data measurement Research on developing human-friendly assistive device/substitution system for the disabled/the elderly people based on psychophysical analysis of human sensory-motor systems. - Brain-like computer - Softcomputing - Digital hardware design # **FACULTY MEMBER** ### Division of Human Intelligence and Machines Intelligence Emerging Nanosystems ### Hirofumi TANAKA Design, development, and integration of nanodevices for artificial intelligence hardware devices. -mail tanaka@brain.kvutech.ac.ip http://www.brain.kvutech.ac.ip/~tanaka/ ### Keywords - Intelligent information processing panodevices - Artificial intelligence nanodevices Neuromorphic nanodevices - Integrated circuits for nonlinea dynamical nanosystems, and Research and development of electric nanodevices for artificial intelligence hardware, whose target is to generate new electrical functionalities by using the circuit of the nanodevices. #### Division of Human Intelligence and Machines search Brain-like Computer System #### **Hakaru TAMUKOH** Professor, Ph.D. Realization of a brain-like computer system and its application to human-friendly systems -mail tamukoh@brain.kvutech.ac.ip http://www.brain.kyutech.ac.jp/~tamukoh/ #### Research Overview - hw/sw complex system A brain-like computer system laboratory aims to realize a brain-like computer based on a hardware/software complex system and its application to embedded systems on home-service robots. ### Division of Human Intelligence and Machines Keywords Motor learning Image processing Learning by watching Brain-Like Intelligent Machines Associate Professor, Hiroyuki MIYAMOTO ent of brain-like intelligent mach with emphasis on construction of self-learning robots acquisition robot, motor learning robot, walfare robot miyamo@brain.kyutech.ac.jp http://www.brain.kyutech.ac.jp/~miyamo/ Research Overview Development of learning by watching robot, skill ### **Division of Human Intelligence and Machines** Bio-inspired artificial vision Associate Professor, Shinsuke YASUKAWA Information processing in biological sensory systems and their applications in field robotics s-yasukawa@brain.kyutech.ac.jp #### Keywords Research Overview - Bio-inspired system - Robot vision Development of living creature observation/ manipulation technique using robot, Simulation of the visual nervous system. Development of Bio-inspired robot vision system, Trials of their techniques in field, http://www.brain.kyutech.ac.jp/~s-yasukawa/ #### Division of Human Intelligence and Machines Field Robotics Associate professor, Development of control system and technology for field robot Yuya NISHIDA mail y-nishida@brain.kyutech.ac.jp Motion analysis Research Overview ● Field robot Motion control To reliably accomplish the mission, our laboratory develops robot that robustly navigates in actual environment, and its elemental technology. We survey actual environment using developed robot and system to benefit society. ### Division of Human Intelligence and Machines Nanomaterial Intelligence Assistant prof, Dr. Sci. Yuki USAMI Creation for brain-inspired information processing system by nanomaterial mail usami@brain.kyutech.ac.jp Research Overview Hvbrid material Mesoscopic physics pysical properties of organic/inorganic materials for extracting flexible bio-inspired function. Creation of unconventional nanodevices by circuitization and Research and development of nanoscale various basic Nanostructure analysis Molecular electronics deviceization from nanomaterial function #### Division of Human Intelligence and Machines Brain-like Al Systems Specially Appointed Professor Osamu NOMURA Research and development of brain-like Al models and circuit architectures mail nomura@brain.kvutech.ac.ip Brain-like information processing Analog integrated circuits Robot control Research Overview Research and development of integrated circuit models of brain functions to achieve extremely low energy consumption, targeting service and assistive robots. #### Division of Human Intelligence and Machines Brain-like Integrated Systems Department of Human Intelligence Systems Specially Appointed Takashi MORIE Professor, Dr.Eng. Design and development of integrated circuits, devices and systems for brain-like artificial morie@brain.kyutech.ac.jp http://www.brain.kyutech.ac.jp/~morie/ ■ Brain-like artificial intelligence Vision and image recognition model Integrated systems for robots Integrated circuit for nonlinear dynamical system Analog integrated system Research and development of brain-like processing models, new functional devices and digital/analog integrated circuits (VLSI) and systems mainly targeted to service robots toward achieving brain-like artificial intelligence. #### Division of Human Intelligence and Machines Brain-like Integrated Circuit, and Nonlinear Dynamical Systems Assistant Professor, Seiji UENOHARA Dr.Eng. Design and development of integrated circuits. devices and systems for brain-like artificial ntelligence E-mail uenohara@brain.kvutech.ac.ip #### Keywords - Brain-like artificial intelligence - Integrated circuits for nonlinear dynamical systems - Mixed signal integrated circuits Research Overview Research of brain-like processing models, integrated circuit (VLSI) design toward high efficiency brain-like artificial intelligence and its social implementation. #### Division of Intelligence Systems and Emergent Design Learning theory of brain-like artificial intelligence Professor, Ph.D. Tetsuo FURUKAWA Learning theories of brain-like artificial intelligence and mathematical modeling of behavior development -mail furukawa@brain.kvutech.ac.ip http://www.brain.kyutech.ac.jp/~furukawa/ Research Overview ● Brain-like artificial intelligence Self-organizing systems Neural networks Machine learning Keywords Our destination is to develop the learning theory and its algorithms, which enable us to discover general rules and intrinsic information underlying the given datasets. Typical themes are higher-order modeling throungh meta-learning and multi-task learning. Besides, we also challenge to model children's #### Division of Intelligence Systems and Emergent Design Human and Social Intelligence Systems **Tomohiro SHIBATA** Professor, Ph.D. Science and Engineering Understanding of **Humans and Societies, Assistive System Development and Social Implementation** mail tom@brain.kyutech.ac.jp https://www.brain.kyutech.ac.jp/~tom/ Keywords Robotics - Artificial intelligence - Biomechanics - Biological Signal Processing - Mixed Reality/Metaverse Brain Science - Medical,KAIGO,Welfare Research Overview We are researching and developing assistive technologies to apply various knowledge and technologies, such as robotics, artificial intelligence, biomechanics, and biological signal processing, to the medical, nursing, and welfare fields. We are also promoting the social implementation of these technologies in collaboration with various players, including the elderly, people with disabilities, medical, nursing, and nursing care professionals, private companies, and governments. # **Division of Intelligence Systems and Emergent Design** Professor, Ph.D. Intelligent Information Processing Systems Keiichi HORIO evelopment of fundamental technology of intelligent information processing system aiming at nodeling and analyzing behavior of human beings horio@brain.kyutech.ac.jp http://www.brain.kyutech.ac.jp/~horio/ Keywords Research Overview Behavior analysis Communication analysis Estimation of personality Intelligent data analysis Intelligent image processing Learning syster individual characteristics by measuring and analyzing human behavior. Besides, we pursue optimization of the intervention method based on analysis results and aim to apply it to real-world society, especially data Investigating principles of neural dynamics, http://www.brain.kyutech.ac.jp/~waga/ to understand biological intelligence waga@brain.kyutech.ac.jp oody kinetics/morphology and societal abilities The Research aimed at estimating and classifying Brain-Inspired Robotics and Intelligence Dynamics Hiroaki WAGATSUMA #### Division of Intelligence Systems and Emergent Design Division of Intelligence Systems and Emergent Design Professor. Doctor of Engineering Sozo INOUE **Human Activity Recognition and Future Disease Prevention** Keywords Application of Machine Learning sozo@brain.kyutech.ac.jp http://sozolab.jp Research Overview Human Activity Recognition Web / Ubiquitous Big Data Application for Healthcare / Nursing Behavior Change loT / Big Data We develop human activity recognition from smartphones and sensors, and their services. We also cultivate AI by collecting medical and nursing care big Keywords Nonlinear dynamics ● Emergent intelligence Episodic memory and emotion ■ Societal robot Computational neuro ■ Neuroinformatics Sport biomechanics Rehabilitation support Research Overview We
explore systems design inspired by biological emergent intelligence, through an understanding of what makes us human (intelligence), how we are embodied in the environment (body kinetics/ morphology), why emotional and social aspects are so important to us (sociality) . Our mathematical modeling and investigation are applied to the design of an artificial intelligence, robot development, and rehabilitation tools. #### Division of Intelligence Systems and Emergent Design Human-Computer Interaction Keywords Soft Computing Cognitive Psychology Kansei Information Processing, Soft Computing Associate Professor, Kaori YOSHIDA Dr. (Eng.) Designing information system based on Kansei Information Processing kaori@brain.kvutech.ac.ip https://www.brain.kvutech.ac.ip/~kaori/ Research Overview We study Kansei Information Processing as one of Human-Computer Interaction research. The research aims to design appropriate information systems based on psychological, social, and technical analysis. Research topics include human-centered design, soft Intelligent Image Processing Information System Design computing, usability, conceptual models, interface metaphors, human cognitive models, implicit behavior analysis, and interactivity structures. #### Division of Intelligence Systems and Emergent Design Statistical learning theory Assistant Professor, Hideaki ISHIBASHI Learning theory of information geometrical hierachical-modeling -mail ishibashi@brain.kvutech.ac.ip ### Keywords - Meta-modeling Multi-task learning - Meta-learning, - Bayesian inference Machine learning, Energy based model #### Research Overview The aim of our research is to develop the learning theory and its algorithms for meta-modeling, which enables to discover meta-knowledge by modeling a set of knowledges or models. We will apply the proposed framework to various fields, such as cognitive science and robotics. # **Division of Human Interaction and Brain Functions** Team Management Professor, Ph.D. Doosub JAHNG A Story of diverse individuals becoming one as http://www.brain.kyutech.ac.jp/~jahng/ - Keywords ■ Team Communication - Occupational Health Marketing Kev Words Meeting[®] Versatile Educational Tools Integrated Solution Comprehensive Health Resources Research Overview mail jahng@brain.kyutech.ac.jp For diverse individuals to agree with each other and become one as a team, innate needs, learned knowledge/skills acquired needs from personal/ environmental circumstances, self-action, health resources and communication become essential. We conduct research on the factors above by utilizing both people's conceptual needs and experimental/ statistical designs to further our study on team management. #### Division of Human Interaction and Brain Functions Keywords Patch-clamp ■ Ca²⁺-imaging Immunohistoche Single cell RT-PCR Confocal laser micr Signal transduction Action potentials Neuroscience Associate Professor, Yoshitaka OTSUBO Ph.D. Taste transduction mechanisms otsubo@brain.kyutech.ac.jp http://www.brain.kyutech.ac.jp/~otsubo/ Research Overview We investigate the cellular and molecular mechanisms underlying the signal processing occurred in mammalian taste buds and we contribute to develop a new signal processing based on features of taste buds ### Division of Intelligence Systems and Emergent Design Bioinspired Intelligence Systems Associate Professor, Shuhei IKEMOTO Ph.D. Robots/Algorithms inspired from biological **FACULTY MEMBER** #### Research Overview - Bioinspired robot - Riginspired algorithm Learning control Stochastic resonance Keywords Behind sophisticated abilities of living organisms are the mechanisms that exploit demerits, e.g., complexity/flexibility of body and unignorable noise, as merits. Toward understanding and applying the mechanisms, academic studies about biologically inspired systems based on robotics have been conducted. http://www.brain.kyutech.ac.jp/~ikemoto/index.html #### Division of Human Interaction and Brain Functions Keywords EEG Neuronal rhythm Circadian rhythm Brain machine interface L2 English learning Music rhythm esports Hippocampal h Neuronal rhythm and Brain Machine Interface (BMI) **Kiyohisa NATSUME** Professor, Ph.D. The relationship between the generation of neuronal rhythm and memory process http://www.brain.kvutech.ac.ip/~natume/ Research Overview natume@brain.kvutech.ac.ip learners using BMI technology. We study experimentally on the generation of neuronal rhythm and compute the rhythm on the computer. We also developed the e-learning system for Japanese English # **Division of Human Interaction and Brain Functions** Associate Professor, Mathematical Neural Network Katsumi TATENO Ph.D. **Neural coding and Neurodynamics** -mail tateno@brain.kyutech.ac.jp ### http://www.brain.kyutech.ac.jp/~tateno/ Research Overview # Keywords Neural coding Medial entorhinal cortex Memory Learning Electroreceptor #### Our interests are complex behavior of neural activity and theoretical investigation on neural coding in the brain. Specifically, we are currently researching neural network models of the medial temporal lobe. ### **Division of Human Technology** Systems Intelligence Visiting Professor, Ph.D. Basic and applied research on intelligent system development Intelligent system Social intelligence Systems healthcare Research Overview Research and development on algorithms of intelligent systems by studying soft computing, statistical analysis, and social intelligence in human-machine collaboration systems with application studies. Hiroshi NAKAJIMA ### Keywords Soft computing Computational intelligence Causal analysis Machine learning Health manageme Biomimetic Robot System Visiting Associate Professor, Takayuki MATSUO **Development of Robot Systems based on** motion control and information processing ### Division of Human Technology Vision Sensing Visiting Professor, Masaki SUWA Basic and applied research on intelligent vision system - 3D SensingPhysics-based Vision - Pattern Recognition #### Research Overview Research and development on vision sensing technologies such as object detection, 3D surface reconstruction and reflectance property analysis, for applications in factory automation or society's Neural network #### Research Overview Adaptive control Division of Human Technology Development of mobile robot systems inspired by mechanisms of animals for irregular terrain underwater and so on. #### **UENO SEIKI Next Generation Frontier Technology Collaboration Laboratory** Image sensing Specially Appointed Associate Professor Kazumichi TANAKA Creating added value for semiconductor nspection machine using AI technology k-tanakazu@brain.kyutech.ac.jp - Artificial Intelligence Value-added creation for mechatronics technologies such as Machine Vision System, high-speed, high-precision, energy-saving, and vibration control by combining AI technology with semiconductor inspection machine manufactured by Ueno Seiki ## Research Center for Neuromorphic AI Hardware system of animals Brain-inspired artificial intelligence Assistant Professor, Ph.D. **Yuichiro TANAKA** Development of brain-inspired artificial intelligence and its application for robots tanaka-yuichiro@brain.kyutech.ac.jp with low power consumption. - Computer system: - Amygdala - Prefrontal cortex FPGA Aiming for a future in which home service robots work as human partners, I develop artificial intelligence models that mimic the functions of the brain, especially those of the hippocampus, amygdala, and prefrontal cortex, and hardware that operates them # Department of Human Intelligence **Systems** # ■ List of overseas dispatched students in FY2022 (by country) and exemption The tuition and other fees are shown below. Only a limited number of students can get exemption of full or half of fees through a selection procedure. INTERNATIONAL EXCHANGES ▶ Application fee: ¥30,000 ▶ Enrollment fee: ¥282,000 ▶ Tuition fee: ¥267,900 per half year living cost Students can apply for various scholarships financed by our university or other foundations. The monthly stipend is from ¥20,000 to ¥140,000. Doctoral course students may get about ¥45,000 per month as a research assistant. The monthly cost of living in Kitakyushu city is approximately from ¥60,000 to ¥80,000 including house rent and utilities. Accommodation Students can apply to stay in the international student housing (Sakura House) near Wakamatsu campus. However, as we have limited rooms available, not all students will be able to stay at Sakura House. The rent of Sakura House is from ¥11,700 to ¥18,000 per month. A tutor, who is current student in the laboratory, can help new students for their study and daily life in Japan. This tutor system is available for the first three months after enrollment. Japanese language class Students can take the appropriate Japanese language class. ▼English Information for international students in our web site is as follows. Q https://www.kyutech.ac.jp/english/ # ACCESS ### **I** STUDENTS' MESSAGE ### Why Kyutech? In October 2019, I participated in the double-degree-exchange program between YangZhou University and Kyutech, During the period, I studied bioengineering, especially in the field of biomolecules. There friendly research environment in the Ikeno Lab. always allow me to asking questions freely and that gave me the enthusiasm for learning more. So after obtaining my master degree, I chose to continue my ph.D study here. ### About Research Now, I am continuing my study at the functional biomolecules field. As we all know, the peptides have a lot of biofunctions in vivo and have demonstrated a promising ability as therapeutic agents and biochemical tools. I am working on the cyclic peptides study, especially, analysis the cyclic peptides' functions in the cell and screening for the new functional cyclic peptides. # Best point of Kyutech The people in kyutech are nice and kind people. The stuff in kyutech, they always give kind help and support with a big smile. The students in
the school, they are very patient and attentive. In fact, I learn the Japanese from my Lab. members. They are always very patient to teach me over and over again. ### My recommended place from Kyutech There are many beautiful views in Kyutech. My favorite is the sunset in the parking. I like to enjoy such a good moment when I am going to the shop. It healing your soul. ### What surprised me most in Japan The shops here close early and it is important to manage your time when you want to buy something. ### What kind of life When I first arrived in Japan, I didn't know any Japanese. I learned it slowly, and although my Japanese is not very good even now. Luckily, the students in the lab are very good Japanese teachers. Until now, I have been learning Japanese from them. # Why Kyutech? Kyutech provides an excellent and extensive setting for research, from its facilities to the assistance it gives its students. ### About Research Under Prof. Horio's supervision, I am currently using deep learning to analyze kindergartener behavior and the immediate surroundings, Professor Horio puts in a lot of effort and is always prepared to provide a helping hand; he consistently offered me a myriad of concrete suggestions that often proved to be spot on. He granted me the opportunity to go off on my own and keep on facilitating the discussion about my research interests. # Best point of Kyutech Many international students from places as diverse as America, Europe, Australia, and Asia have been accepted to study at Kyutech. That way, discussions among students can include a wide range of viewpoints (global perspectives), not just those gleaned from academic research or cross-cultural experiences. ### My recommended place from Kvutech For me, nothing beats spending time in the lab. It's not just a place to get work done; it's also a communal hub where people can swap tales unrelated to our studies. Having access to play sports with my peers in the aymnasium is one of the perks of studying at KYUTECH, making it one of my favorite places to go. ## What surprised me most in Japan The timely work and the dedication of the whole system in Japan is one of the things that has impressed me a lot. ### What kind of life It's wonderful to meet new people, and I've recently become part of a local community that has encouraged me to join celebrations of all kinds, from festive occasions to outings. If you plan on relocating to Kitakyushu with your family during your study, you'll be happy to know that the Kitakvushu International Association (KIA) is one of many expat support organizations in the area, providing a wide range of services to help us such as provide learning iapanese, organize some event, etc. # ··· My future dream I want to explore leading-edge research that makes a impact to the society. ### Wakamatsu Campus in Kitakvushu Science and Research Park Graduate School of Life Science and Systems Engineering Cafeteria Kitakvushu Science and Research Park Beijin — Fukuoka HongKong — Fukuoka · · About 2H50M ### Other Campuses of Kyushu Institute of Technology Tohata Campus